The SDC-PE15N module is an 802.11n PCI Express Mini Card with all key Summit brand hardware and software capabilities. This dual-band radio module operates in both the 2.4 and 5 GHz frequency bands supporting IEEE 802.11n as well as 802.11a, 802.11b, and 802.11g. As a result, the SDC-PE15N module is ideal for integration into a vehicle-mounted mobile computer or any other business-critical mobile device. Supported on Windows XP, Windows XP Embedded, Windows 7, Windows 7 Embedded, Windows 8. (NOTE: Windows 8 supported via the compatible Windows 7 driver).


Wi-Fi Alliance:802.11a, 802.11b, 802.11g, 802.11n. WPA Enterprise, WPA2 Enterprise. Cisco Compatible Extensions (Version 4).
Chipset (Wireless)
Broadcom BCM4322
Connector Type
PCI Express Mini
Dimension (Height - mm)
3.3 mm
Dimension (Length - mm)
51 mm
Dimension (Width - mm)
30 mm
Input Power
Requirements 3.3 VDC +/- 10%
52-pin edge connector. Two through-holes
Operating Channels (2.4 GHz)
ETSI and KC:13 (3 non-overlapping). FCC:11 (3 non-overlapping). MIC:14 (4 non-overlapping)
Operating Channels (5 GHz)
20-MHz Channels -- ETSI: 19 non-overlapping. FCC: 23 non-overlapping. MIC: 8 non-overlapping. KC: 12 non-overlapping. 40-MHz Channels -- ETSI: 9 non-overlapping. FCC: 11 non-overlapping. MIC: 4 non-overlapping.
Operating Humidity
10 to 90% (non-condensing)
Operating Systems Supported
Windows XP, XP Embedded, 7, 7 Embedded, 8.
Power Consumption
Transmit: 600 mA (1980 mW) Receive: 450 mA (1485 mW) Standby: 3 mA (10 mW)
Media Access: Carrier sense multiple access with collision avoidance (CSMA/CA)
Standards: Wireless Equivalent Privacy (WEP), Wi-Fi Protected Access (WPA), IEEE 802.11i (WPA2). Encryption: Wireless Equivalent Privacy (WEP, RC4 Algorithm), Temporal Key Integrity Protocol (TKIP, RC4 Algorithm), Advanced Encryption Standard (AES, Rijndael Algorithm). Encryption Key Provisioning: Static (40 and 128 bit lengths). Pre-Shared (PSK)Dynamic: 802.1X Extensible Authentication Protocol. Types: EAP-FAST, EAP-TLS, EAP-TTLS, PEAP-GTC, PEAP-MSCHAPv2, PEAP-TLS, LEAP
Transmit Power (Max)
.317 oz (9 g)
Wireless Specification
2.4 GHz
Part NumberAntenna OptionsAntenna TypeChipset (Wireless)ComplianceConnectorData RateDimension (Height - mm)Dimension (Length - mm)Dimension (Width - mm)EncryptionFrequency Range (Max)Frequency Range (Min)Frequency Range 2 (Max)Frequency Range 2 (Min)Input PowerLogical InterfacesNetwork ArchitectureOS/SoftwareOperating Channels (2.4 GHz)Operating Channels (5 GHz)Operating HumidityOperating Systems SupportedPower ConsumptionPower Consumption (Rx)Power Consumption (Tx)Product TypeProtocolsReceive SensitivitySecurityStorage HumiditySystem ArchitectureTechnologyTransmit Power (Max)WeightWi-Fi VersionWireless Specification
End of Life (EOL)
2 U.FL (Hirose) connectors for 2 x 2 MIMO support External Broadcom BCM4322 ETSI 32-bit PCIe Mini Card Up to 300 mbps 3.3 mm51 mm30 mmWEP 2495 MHz2400 MHz5825 MHz5150 MHz3.3 VDC +/- 10% PCI Express Mini Infrastructure and ad hoc Windows XP, Windows Embedded ETSI and KC:13 (3 non-overlapping). FCC:11 (3 non-overlapping). MIC:14 (4 non-overlapping) 20-MHz Channels -- ETSI: 19 non-overlapping. FCC: 23 non-overlapping. MIC: 8 non-overlapping. KC: 12 non-overlapping. 40-MHz Channels -- ETSI: 9 non-overlapping. FCC: 11 non-overlapping. MIC: 4 non-overlapping. 10 to 90% (non-condensing) Windows XP Professional and Embedded See datasheet 91 mA 600 mA Embedded Module Media Access: Carrier sense multiple access with collision avoidance (CSMA/CA) See datasheet Standards: Wireless Equivalent Privacy (WEP) 10 to 90% (non-condensing) Hosted 802.11abgn +17 dBm .317 oz (9 g) 802.11a/b/g/n 802.11 a/b/g/n Wi-Fi


Name Part Type Last Updated
Wi-Fi Certification - WFA8343 - PE15N.pdf All Certification 01/17/2019
EU Standards Updates.pdf All Certification 01/17/2019
RoHS 3 Compliance - Wi-Fi Products All Certification 01/11/2024
EOL Announcement - PE15N.pdf All Documentation 02/26/2019
Frequently Asked Questions - Wi-Fi Software Developers Kit.pdf All Documentation 01/17/2019
Quick Start Guide - Wi-Fi on Windows XP.pdf All Documentation 01/17/2019
User Guide - Summit Software Developers Kit.pdf All Documentation 01/17/2019
Usage Notes - Laird Wi-Fi Software.pdf All Documentation 01/17/2019
User Guide - Laird Connection Manager.pdf All Documentation 01/17/2019
Software Integration Guide - Windows Desktop.pdf All Documentation 01/17/2019
Datasheet - PE15N (NDIS6).pdf All Documentation 01/17/2019
Datasheet - PE15N (NDIS5).pdf All Documentation 01/17/2019
User Guide - Laird Regulatory Utility.pdf All Documentation 01/17/2019
Release Notes - PE15N for Win7 8.zip All Software 01/17/2019
Release Notes - PE15N for WinXP.zip All Software 01/17/2019
Laird PE15N v3.4.3.0.zip All Software 01/17/2019
Laird PE15N v3 4 2 1.zip All Software 01/17/2019
Laird PE15N v3 4 18 0.zip All Software 01/17/2019
Laird PE15N v3 4 15 1.zip All Software 01/17/2019
Laird PE15N v3 4 14 3.zip All Software 01/17/2019
Laird PE15N v3 4 13 3.zip All Software 01/17/2019
Laird PE15N v3 4 12 7.zip All Software 01/17/2019
Laird PE15N v3 4 11 2.zip All Software 01/17/2019
Laird PE15N v3 4 10 3.zip All Software 01/17/2019
CONN-ADMIN-GUIDE-SUMMIT-CLIENT-UTILITY 12 0.pdf All Software 01/17/2019
Laird PE15N v3.4.4.0.zip All Software 01/17/2019
Laird PE15N v3.4.19.4.zip All Software 01/17/2019
EU Certifications - PE15N All Certification 06/23/2021
FCC Certifications - PE15N All Certification 06/23/2021
ISED (Canada) Certifications - PE15N All Certification 06/23/2021
MIC Certifications - PE15N All Certification 06/23/2021
NCC Certifications - PE15N All Certification 06/23/2021


How do I gather the driver debug login for the PE15N?

You need a special debug version build

Use DebugView on Windows to get the debug output 

You can download DebugView from Microsoft’s website at http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

Is Win8/8.1 supported with the PE15N?

While the PE15N driver for Win7 should run without issue on Win8/8.1 machines due to the backwards compatibility of Win 8.1 with Win 7, we have not as yet fully tested this. Our intention is to do a full QA Regression Testing pass against Win8/8.1 early in 2015 to confirm this. At this time there are no plans to support the new features related to Wi-Fi that are part of Win 8.1 as opposed to Win7, however we do want to make sure that the Win 7 drivers are able to run on Win 8/8.1 platforms and support all current functionality. Examples of Win8/8.1 (NDIS6.x & Native WiFi) features that fall into this category would be Wake On Wireless (WOL) & Enhanced Power Management, Network List Offload (NLO), WiFi Direct (WFD), 802.11w (PMF), and Connected Standby. We are happy to accept customer feature enhancement requests and consider them balanced against the applicable business cases. That being said, we do feel that the current feature set provides excellent performance under the most demanding circumstances and that we already provide similar or matching features that are deemed important by our customers.

What is the ECCN for "Summit" Wi-Fi radios?

The ECCN for the radios listed, which comprise the "Summit" line of Wi-Fi radios, is 5A002.

Does Ezurio provide 3D files for modules?

Ezurio (formerly Laird Connectivity) provides 3D files (STEP) files for most but not all of it's modules.  Based on the nature of the information in the files, in most cases Laird requires a login to access these files as well as layout files and software/firmware downloads.  As such, for most modules, the 3D files are found under the Software Downloads tab of the product page.  The page offers a credentials request link for customers who need credentials.  In most cases, the credentials are provided via return email within about 10 minutes. Please contact support if you have any additional questions or have any issues accessing our downloads.

Do we recommend conformal coating your modules?

We highly do not recommend conformal coating the radio module. If you plan on encapsulating the radio module in a potting compound or conformal coating, you must assure that the compound in liquid or solid form does not enter under the shield where there are sensitive RF components. Some of the capacitive and inductance values are as low (pF and nH) and could be sensitive to contacting materials such as potting compounds. There are potting compounds and conformal coatings which have very good dielectric constants and are suitable for 2.4 GHz potting applications, however, when you apply any of these, they were not accounted for in the circuit design and might reduce performance of the device (or all together cause it not to function).  You should run tests on their particular potting compound and evaluate radio's performance and range.  Also, it's worth mentioning that applying any compound, conformal coating or potting directly to the module WILL void the warranty. If your application requires 100% sealing of the radio module, there is a way to do this very successfully without impacting the module performance. Simply place the module on your PCB. Place a plastic cover over the module (like a hat), make the cover large enough to cover the whole module. Apply glue around the bottom perimeter of the cover where it sits on the PCB. This allows the module to function in free air-space while there is a complete seal around it. This information is only for reference and we recommend you should conduct your own testing with your prototype of your end application to find the best suitable fit for your design.  

How many reflows do you recommend for your modules?

We only recommend reflowing our modules once as it can damage the module and void the warranty.

What are the available CAD file formats?

Ezurio provides layout files PADS and PADS ASCII formats. The ASCII files will import to Altium (and Protel varients) as well as Cadence (Orcad and Allegro) CAD packages. As far as we know, there is no way to import to Eagle CAD. Please be sure to use the .asc file for PCB and the .txt file for the schematic when importing to Altium. Ezurio uses ORCAD for schematics (Gerbers). 

What's the recommended process to clean modules?

The recommended cleanser is "hydrocarbon cleaning oil", which can be used to clean the RF shield and PCB. We do not recommend the use of alcohol as it doesn't work as well and could leave residue on the boards.  

How do I troubleshoot the status information in LCM / SCU?

For the 10, 15, 30, and 40 series, the status of the LCM / SCU can be in one of two states, "non-associated? and ?associated". Once the radio has associated with an AP, it will move from "non-associated? to ?associated". If WPA / WPA2 authenticates failure, the status will switch between "non-associated? and ?associated". If authentication occurs without an IP the radio cannot be identified from the status field -- you will need to check in the IP field. For the 45 and 50 series, the status in LCM / SCU can be in one of three states, "Not Associated", "Associated", and "Connected?. Associated with no IP is a valid state for our radios to attempt to reconnect with an invalid PSK. Once the radio has associated with an AP, it will move from "not associated? to ?associated". Only after the radio authenticates and has an IP will it move to the "Connnected" state. In the case of WPA or WPA2 authenticated failure or authentication without an IP the radios will remain  in an "associated" state.

Following WPA / WPA2 authenticated failure, scu_tray will pop up a message indicating authentication failure. How do I enable/disable this feature?

You can modify this feature by creating a new registry called ?NotifyAttempts? under ?hklm/software/Laird/ScuTray?, this allows you to disable / enable the pop-up message for WPA / WPA2 authentication and even set the number of attempts before notification. -DWORD: NotifyAttempts -Values: 0 (disabled); NOT 0 (the number of attempts before notification)

Are the roam settings used to switch between profiles within the auto profile list?

Yes, here is an example. 1. The auto profile list contains SSID_1 and SSID_2 2. Device is connected to SSID_1 3. RSSI drops below roam trigger, the radio scans for other APs and finds SSID_2 is a better candidate 4. The radio disconnects from SSID_1 and connects to SSID_2

Does NDIS5 or NDIS6 run in Laird's WEC7 release?

NDIS5 runs Laird's WEC7 release.

Can CE5 and CE6 support SHA-2?

No, the patch that supports SHA-2 is in the Windows Embedded Compact 7 Monthly Update (April 2016). Prior to that, the OS itself doesn't support it.

How do you keep the tray icon off permanently in CE/WM platform?

Setting the following registry to 0 can achieve this: HKLM\Comm\SDCCF10G1\Parms\Configs\GlobalConfig DWORD: trayIcon - 0 = Hide Icon - Non-0 = Show Icon

Before LCM detects a Wi-Fi radio, how do I hard code the radio module it would use?

The radio chipset value is written by the driver when it loads, and indicates which radio is actually installed. LCM uses this value to determine some parameters that vary between radio types. If you want to hard code the Wi-Fi radio before the driver loads, you can do so with this registry: [HKEY_LOCAL_MACHINE/Comm/SDCCF10G1/Parms/Configs/GlobalConfig] "RadioChipSet"=dword:00000006 The values for that registry key are in the sdc_sdk.h as follows: typedef enum _RADIOCHIPSET { RADIOCHIPSET_NONE = 0, RADIOCHIPSET_SDC10 = 1, //BCM4318 RADIOCHIPSET_SDC15 = 2, //BCM4322, RADIOCHIPSET_SDC30 = 3, //AR6002, RADIOCHIPSET_SDC40L = 4, //BCM4319, RADIOCHIPSET_SDC40NBT = 5, //BCM4329, RADIOCHIPSET_SDC45 = 6, //AR6003, RADIOCHIPSET_SDC50 = 7, //AR6004, } RADIOCHIPSET;

mandatory/optional input for EAP type

mandatory/optional input for EAP type   EAP credentials Mandatory input Optional input LEAP User name, user password   EAP FAST User name, user password PAC file, FAC password PEAP MSCHAP User name, user password CA cert PEAP GTC User name, user password CA cert EAP TLS User name, user cert CA cert EAP TTLS User name, user password CA cert PEAP TLS User name, user cert CA cert   Note 1: this settings should be read in user perspective but not for actual implementation. For example, when a user does not input PAC file, it will use auto PAC provisioning. If a user inputs it, it will do a manual PAC provisioning. Note 2: user password is not used for TLS but only user cert is used instead.    


What are the reasons for the null packets in an RF trace?

There are two reasons to send out null packets with p bit enabled. 1. Its RSSI has crossed over the Roam Trigger and the client radio is supposed to start scanning for a new AP. 2. The client radio is running one of our power-save modes (Fast or Max) and is going to sleep for a brief (e.g. 20 ms) period and is telling the AP so it will buffer traffic for it while it sleeps. After a radio has slept for some period of time (defined as the interval between DTIM periods) it is supposed to wake up and indicate to the AP that it is awake by sending a null packet with the P-bit turned off. The radio should only wake if it has traffic to send or it sees from the DTIM in the AP?s beacons that the AP has traffic to send to it.


DFS channels in KCC

The following channels require DFS in Korea KCC/KC domain. Channel Frequency MHz 52 5260 56 5280 60 5300 64 5320 100 5500 104 5520 108 5540 112 5560 116 5580 120 5600 124 5620


What connector types do your Wi-Fi radios support?

A list of our radios and supported connector types can be found here: WiFi + Bluetooth Modules

What is the difference between eap-mschapv2 and mschapv2 in EAP_TTLS?

With EAP-MS-CHAPv2, the data sent in tunnel will be encapsulated as EAP-MESSAGE AVP (attribute-value pair). In the case of MS-CHAPv2, there is no such extra encapsulation it is just the MS-CHAPv2 message.


KCC domain

The attached document is the list current channels for the KCC domain as of 2015. In document, red means DFS required.

As the PMKcaching, two options in the setting, standard or opmk. What is the definition of these two options?

Standard: indicates PMK Caching: This means that the 802.1x authentication can be skipped on an access point that a client has already authenticated to once before. Only the 4-way handshake needs to happen. This is useful for a client that needs to reconnect to an access point that it roamed away from previously, due to signal loss etc. However, if a client has not roamed to a particular access point during its current working session, it must then authenticate to that specific access point using 802.1x. PMK Caching is the method defined in the 802.11x (WPA/WPA2) specification. Opportunistic Key Caching: With this method, a client device can skip the 802.1x authentication with an access point after a full authentication,and only needs to perform the 4 way handshake when roaming to access points that are centrally managed by the same WLC in an LWAPP or other controller-based infrastructure. This means that the client doesn't need to authenticate with access points that it wants to roam to, as long as the client has authenticated successfully to at least one of the access points in the same zone as the access point that handled the previous successful authentication. In this case, the PMK identifier has been cached at a central location, like the WLC (or wireless switch.) With OKC, the client must support this method for it to be used, even if the infrastructure has been configured with OKC enabled.

Which EAP types Laird supports in CCKM?

CCKM is supported with all EAP types Laird supports?LEAP, EAP-FAST, PEAP-MSCHAPv2, PEAP-GTC, PEAP-TLS, EAP-TLS and EAP-TTLS. ACS supports all of the EAP types except EAP-TTLS. However, supporting CCKM is not dependent on using ACS as the RADIUS server. Laird can do CCKM with any RADIUS server since CCKM support is in the wireless infrastructure.

How to find the PE15N registry setting in Windows?

The Vendor ID and Device ID of PE15N are 14E4 and 432B. The PCI registry paths are under [HKEY_LOCAL_MACHINE\SYSTEM\ControlSet002\Enum\PCI] and [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\PCI] Under these two paths, you can find all registered PCIe modules in this system. Fine the one that with VEN_14E4&DEV_432B-----, and this is the one PE15N register in the system.

Become an Ezurio Customer to Gain Exclusive Access to Our Design Experts

  • Antenna Scans
  • Antenna selection and placement
  • Custom antenna design
  • Worldwide EMC testing / certifications
  • Embedded RF hardware / firmware design
  • Cloud architecture and integration
  • Mobile application development
  • Product & Industrial Design

Talk to an Expert


Distributor Phone Number Region Website
Arrow Electronics 1-855-326-4757
+44 2039 365486
APAC, North America, South America, EMEA Website
Avnet 1-480-643-2000
+44 1628 512900
APAC, North America, South America, EMEA Website
Braemac Australia, New Zealand, South East Asia +61 2 9550 6600
+64 9 477 2148
APAC Website
Cal-Chip Connect 1-215-942-8900
North America Website
DigiKey 1-800-344-4539
North America, South America, APAC, EMEA Website
EBV Elektronik EMEA Website
Farlink Technology China, Hong Kong +86 13266922199
APAC Website
Farnell 1-800-936-198
+44 3447 11 11 22
EMEA Website
Future Electronics 1-800-675-1619
North America, South America, APAC, EMEA Website
Glyn +49-6126-590-0
EMEA Website
Hy-Line Germany Only +49 89 614 503 0
EMEA Website
Jetronic China, Hong Kong and Taiwan 852-27636806 
APAC Website
Laird Connectivity 1-847-839-6925
+44 1628 858941
North America, South America, APAC, EMEA Website
M2M Germany +49-6081-587386-0
EMEA Website
Martinsson +46 8 7440300
EMEA Website
McCoy South East Asia +65 6515 2988
APAC Website
Mouser 1-800-346-6873
+44 1494 427500
North America, South America, APAC, EMEA Website
RS Components +852-2421-9898
+44 3457-201201
North America, South America, APAC, EMEA Website
Ryoyo Japan +81-3-3543-7711
APAC Website
Solsta UK Only +44 (0) 1527 830800
EMEA Website
Supreme Components International India, South East Asia +65 6848-1178
APAC Website
Symmetry Electronics 1-866-506-8829
North America Website
Tekdis Australia and New Zealand +61 3 8669 1210
APAC Website
Telsys +972 3 7657666
EMEA Website
WPG +44 1628 958460
EMEA Website